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internal waves
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Laboratory experiments are carried out to determine the nature of internal wave
breaking and the limiting wave steepness for progressive, periodic, lowest-mode
internal waves in a two-layer, miscible density stratification. Shoaling effects are not
considered. The waves investigated here are long relative to the thickness of the density
interface separating the two fluid layers. Planar laser-induced fluoresence (PLIF) flow
visualization shows that wave breaking most closely resembles a Kelvin–Helmholtz
shear instability originating in the high-shear wave crest and trough regions. However,
this instability is strongly temporally and spatially modified by the oscillations of the
driving wave shear. Unlike a steady stratified shear layer, the wave instability discussed
here is not governed by the canonical Ri = 1/4 stability limit. Instead, the wave time
scale (the time scale of the destabilizing shear) imposes an additional constraint on
instability, lowering the critical Richardson number below 1/4. Experiments were
carried out to quantify this instability threshold, and show that, for the range of
wavenumbers considered in this study, the critical wave steepness at which the wave
breaking occurs is wavenumber-dependent (unlike surface waves). The corresponding
critical wave Richardson numbers at incipient wave breaking are well below 1/4, in
consonance with a modified instability analysis based on results from stratified shear
flow instability theory.

1. Introduction
Breaking internal waves are known to play a crucial role in the transport of mass

and momentum in lakes (Hodges et al. 2000; Boegman et al. 2003), the ocean (Gregg
1987; Gregg, Winkel & Sanford 1993), and the atmosphere (Fritts 1989; Scinocca
1995). The energy and mass transfers associated with breaking internal waves are
important, usually sub-grid scale processes that must be accurately modelled in
regional and global ocean and atmosphere numerical models. The use of oceanic
and atmospheric microstructure measurements to infer diapycnal mixing associated
with breaking internal waves also requires the accurate parameterization of internal
wave breaking events. Crucial to the accurate parameterization of these events is a
thorough understanding of the instabilities resulting in internal wave breaking.

This paper describes the results of laboratory experiments investigating progressive
monochromatic internal wave breaking in a two-layer-type density stratification. The
experiments demonstrate conclusively, for waves that are long relative to the interfacial
thickness, that wave breaking occurs due to a modified Kelvin–Helmholtz (‘K-H’)
instability. The work aims to resolve two fundamental issues related to breaking
internal waves: (i) the critical amplitude at which a progressive monochromatic inter-
facial wave will break and (ii) the mechanism(s) by which the wave becomes unstable
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Figure 1. Schematic of progressive long internal wave flow.

and breaks. This paper is laid out as follows. A brief review of internal wave breaking
and relevant studies is presented in § 2. Section 3 describes the laboratory facilities
and techniques used for the wave breaking experiments; the results of the experiments
are presented in § 4. In § 5, the results are discussed in the light of modified stratified
shear flow stability analysis, and conclusions are presented in § 6.

2. Background
The present discussion focuses on periodic internal gravity waves that are long

relative to the vertical scale of variability associated with the background density
stratification; an excellent review on shorter waves is given in Staquet & Sommeria
(2002). The density stratification supporting internal waves in much of the Earth’s
oceans, lakes and atmosphere can be approximated as a two-layer stratification, in
which a well-mixed upper layer is separated from a denser, homogeneous bottom layer
by a thin region (Wessels & Hutter 1996; Michallet & Ivey 1999). The parameter
g′ = g�ρ/ρ0 describes the reduced gravity that provides the restoring force supporting
the waves in the system, where �ρ = ρ1 − ρ2 is the density difference between the
lower (ρ1) and upper (ρ2) fluid layers, and ρ0 = (ρ1 + ρ2)/2 is the average density. In
this case, the density distribution can be effectively approximated by a hyperbolic
tangent profile:

ρ(z) = ρ0 − �ρ

2
tanh(mz). (1)

The hyperbolic tangent profile is used here in lieu of an error function profile
because of the existing analytical work on the latter profile (Thorpe 1968c, 1978);
however, Thorpe (1971) showed that the stability properties of both profiles are
similar.

The work described herein focuses on horizontally propagating lowest mode mono-
chromatic internal waves travelling on the density interface. A schematic of the flow is
presented in figure 1. Specifically, the threshold for wave instability and the nature of
wave breaking are examined here for waves long relative to the interfacial thickness,
or rather waves having small kδ, where k = 2π/λ is the horizontal wavenumber and δ

is a measure of the 99 % density interface thickness, here computed from the vertical
density profile ρ(z) as

δ = z{ρ = 0.99(ρ0 − ρ2)} − z{ρ = 0.99(ρ1 − ρ0)}. (2)
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The 99 % interfacial thickness δ can be related to the length scale associated with the
density profile (1) as

δ =
5.3

m
. (3)

This conversion is provided for ease of comparison with other work on stratified shear
layers, where 1/m or �ρ/(∂ρ/∂z)z=0 = 2/m are sometimes used as the normalizing
length scales.† This definition of δ corresponds to that used by Fringer & Street
(2003) in their numerical experiments.

In this paper, horizontal boundary effects that induce wave shoaling are not
considered; rather, the focus is on ‘deep’ waves (kh1, kh2 large, where h1 and h2

are the lower and upper layer depths, respectively). The lowest-order description of
the interfacial distortion η(x, t) induced by the progressive wave train is η(x, t) =
a cos(kx − ωt), where a is the wave amplitude.

Phillips (1966, p. 185) argued that lowest-mode progressive internal wave breaking
would occur in the form of a shear instability induced by the strong local vertical
shear present at the wave crests and troughs. To lowest order, the wave-induced
gradient Richardson number at these locations is

Riw ≡ N2

|∂U/∂z|2

∣∣∣∣
z=0,x=crest/trough

(4)

≈ kδ

5.3(ka)2
. (5)

Here

N (z) =

√(
−g

ρ

)/
dρ

dz

is the local Brünt–Väisälä frequency (rad s−1) describing the background stratification,
and ∂U/∂z is the vertical shear of the wave-induced horizontal velocity U (x, z, t). The
parameter ka is the wave steepness. The estimate (4) is obtained using the normal-
mode solution derived by Thorpe (1968) for periodic lowest-mode internal waves in
a hyperbolic-tangent (two-layer) density profile. This approximation holds well for
low values of kδ and (kakδ), but requires correction at higher (kakδ) Fringer & Street
(2003). Another estimate for the interfacial Richardson number at the wave crests
and troughs is Riw = kδ/2(ka)2, which is obtained by using the two-layer interfacial
deep wave solutions (e.g. Turner 1973, p. 14), and assuming that the shear and density
variation both occur over a common vertical scale δ. This estimate is an overprediction
of the mid-interface Richardson number, but is convenient to use since it can easily
be obtained from the linear, irrotational two-layer wave solutions. It differs by a
constant from that of Thorpe (1968), (4), due to differences in the definitions of
δ between the two-layer approximation and the continuously stratified formulation.
Regardless of the specific formulation used, the Richardson number at the wave crests
and troughs is determined fully by the wave parameters ka and kδ; for this reason
it is referred to here as the ‘wave Richardson number’ and denoted Riw. We refer to
the time-varying mid-interface Richardson number as Ri0. The relationship between
the two is explained fully in § 5.

† For an error function profile ρ(z) = ρ0 − (�ρ/2ρ0)erf(βz), the 99% interfacial thickness is
δ = 3.7/β, and �ρ/(∂ρ/∂z)z=0 = 2/β.
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The stability of a steady, parallel, two-dimensional, inviscid, stratified shear flow
to infinitesimal perturbations is guaranteed if the Richardson number is everywhere
greater than 1/4 (Miles 1961; Howard 1961). If the Richardson number is anywhere
below 1/4, then instability is possible, but not guaranteed. For coincident, equal-
thickness hyperbolic tangent density and velocity profiles, Hazel (1972) showed that
the flow stability could be phrased in terms of the mid-point Richardson number,
and that the flow was unstable to certain perturbations if the mid-point Richardson
number fell below 1/4 Hazel (1972) Thorpe (1968c) showed that the flow at the
crests and troughs of lowest-mode long interfacial waves is described well by the
hyperbolic-tangent profiles. Neglecting unsteadiness, the stability of the high-shear
crest and trough regions of long progressive interfacial waves can, similarly, be
phrased in terms of the wave Richardson number Riw , the mid-point Richardson
number (4). The simple application of a Ri= 1/4 instability criterion with either
of the Riw estimates given earlier yields that the critical wave steepness kacrit, the
steepness above which wave breaking occurs, should be wavenumber-dependent and
scale as kacrit ∼ (kδ)1/2. The constant of proportionality will be particular to the Riw
estimate used. This wavenumber dependence of the limiting wave steepness for finite-
thickness interfacial waves is an important distinction from infinitesimal-thickness
interfacial gravity waves (e.g. air–water waves), for which the limiting steepness is
independent of wavenumber. However, the application of the Ri= 1/4 criterion to
finite-amplitude interfacial waves is questionable, since the flow is unsteady. Thorpe
(1968) hypothesized that for high-frequency internal waves, shear-induced internal
wave breaking could occur at wave crests and troughs only if the instability time
scale was suitably smaller than the wave period. This idea is expanded in § 5.

Orlanski & Bryan (1969), Long (1972), Holyer (1979), Thorpe (1978), and others
have argued that progressive internal wave breaking occurs due to convective instabi-
lity. Thorpe’s (1978) finite-amplitude normal mode solutions suggested that convective
breaking would occur before shear instability for progressive waves in an asymmetric
two-layer stratification, with a limiting wave steepness of ka =0.35 for a wave with
kδ = 0.56. Holyer (1979), for Boussinesq infinitesimal-interface waves, calculated a
convective wave breaking steepness of ka = 1.1, substantially larger than ka = 0.443,

the steepness at which progressive deep air–water interfacial waves break (Stokes
1849). However, the effect of a finite-thickness interface was not considered in the cal-
culations. The convective breaking criterion, U > cp , where the wave-induced velocity
U exceeds the wave phase speed cp , can be phrased in terms of a critical steepness
formulation ka > kacrit since the maximum wave-induced velocity is U ∼ aω and
cp = ω/k. Experiments by Grue et al. (2000) showed that solitary waves in two-layer
stratifications break when the wave-induced fluid velocity approached the wave phase
speed. Standing internal waves in two-layer stratifications have also been shown to
break due to a convective instability Thorpe (1968). Observations and modelling of
long internal waves in the atmosphere have also pointed to convective instability as
the cause of wave breaking (Hecht et al. 1997; Fritts et al. 1997).

It is also thought that the presence of a weak background shear reduces the
wave slope at which long internal wave breaking occurs. Breaking internal wave
visualizations in the ocean thermocline by Woods (1968) verified that wave breaking
due to shear instability could be enhanced by the presence of a weak background
shear. Thorpe’s (1978) finite-amplitude two-layer wave calculations and laboratory
experiments also showed that the threshold slope for wave breaking was reduced in
the presence of a background shear. The calculations predicted that with or without
background shear, wave breaking would take place due to a convective instability
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for the wavenumbers considered. Stastna & Lamb (2002) showed that the nature of
non-uniform background flows is important in determining the limiting amplitude
and breaking mechanism of two-layer internal solitary waves. Critical layers are also
important regions where background shear dictates internal wave instability (Lin
et al. 1993; Winters & D’Asaro 1994), but they are not immediately relevant to the
long wave discussion here since in that case the wavelength shortens to a scale on the
order of the vertical scale of the stratification.

Antenucci & Imberger (2001) and Boegman et al. (2003) observed high-frequency
internal waves in lakes near internal Kelvin wave fronts. These high-frequency waves
had wavenumbers and frequencies that agreed well with those predicted by numerical
solutions to the Taylor–Goldstein equation for the observed background density and
velocity profiles, suggesting that shear instability resulted from the enhanced shear
associated with the internal Kelvin waves.

Internal wave–internal wave interactions are thought to be an important energy
transfer mechanism and possible wave breaking cause in polychromatic internal wave
fields Thorpe (1975). However, first-mode progressive internal waves cannot have an
O(ka) resonant triad with other first-mode internal waves (Thorpe 1966; Davis &
Acrivos 1967; Phillips 1966, § 5.4). Davis & Acrivos (1967) showed analytically and
experimentally that, for two-dimensional progressive interfacial waves, the most likely
triad to form in two-layer stratifications was composed of a progressive first-mode
wave, a progressive second-mode wave, and a third, oppositely travelling third mode-
wave.

The work most immediately relevent to the present study is that of Fringer &
Street (2003), who carried out high-resolution numerical simulations of breaking
monochromatic interfacial waves in tandem with the laboratory studies described
here. They found that moderate-length internal waves (0.31 < kδ < 0.56) broke due
to a two-dimensional shear instability, while shorter waves (kδ > 0.56) broke due to
a mixed shear–convective instability, and that the critical steepness for all waves was
wavenumber-dependent, ranging from ka = 0.75 to 1.05. Our work complements their
study for the low-kδ range (kδ < 0.3).

The results presented here address the question of the nature and threshold of
wave breaking for non-shoaling progressive two-layer internal waves away from
horizontal boundaries. In the absence of a background mean shear, a progressive
deep monochromatic interfacial wave in a two-layer density stratification, with a
finite-thickness interfacial region, is fully characterized by the set of parameters
{a, k, δ, ν, κ, g′}. The parameter ν is the fluid kinematic viscosity and κ is the diffusivity
of the stratifying scalar. The dispersion relation sets the wave frequency ω, and the
wave-induced velocities are determined by the entire parameter set. Regardless of
the instability mechanism–convective or shear–the critical wave steepness kacrit at
which progressive interfacial waves break can be phrased as having the functional
dependence

kacrit = F (kδ, Rew, Sc), (6)

where Rew is the wave Reynolds number (defined later). The parameter Sc ≡ ν/κ is the
Schmidt number, giving the ratio of momentum diffusivity (ν) to the diffusivity of the
stratifying scalar (κ). The primary focus of this paper is illuminating the dependence
of kacrit on kδ for low values of kδ (long waves), low-to-moderate Rew , and fixed
Sc ≈ 700 (salt). The wave breaking criterion (6) can be phrased equivalently in terms
of a critical wave-induced Richardson number, Riw,crit, below which the wave will
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Figure 2. Schematic of laboratory facility and instrumentation used in internal wave
experiments: (a) side view, (b) plan view.

break. Then Riw,crit replaces kacrit, since the parameters ka and kδ fully determine
Riw , (4).

3. Laboratory experiments
Laboratory experiments were designed to force progressive monochromatic internal

waves to breaking, allowing the measurement of the wave amplitude at wave breaking
and the detailed visualization of the wave breaking events. Following a comment by
Turner (1973, p. 126), a laterally contracting channel was used to force waves to
breaking. The approach used here is similar to that used by Ramberg & Griffin
(1987) in which monochromatic surface water waves were forced to breaking through
a lateral channel contraction.

3.1. Experimental facility

The laboratory experiments were carried out in the Stanford University Environmental
Fluid Mechanics Laboratory internal wave facility shown in figure 2. The facility is
an enclosed rectangular tank constructed of modular steel frame supports and 2.5 cm
thick clear Plexiglas walls, with dimensions 488 cm long, 61 cm tall, and 30 cm wide.
The main features of the tank include a vertically oscillating (‘plunger’ type) interfacial
wavemaker, a slideable carriage holding mounted instruments, another sliding carriage
with a mounted camera and laser optics to generate a vertical laser light sheet for flow
imaging, a density interface sharpening device, a synthetic horsehair beach to prevent
wave reflections, and surface and bottom diffuser plates for filling. Additionally, for



Instability and breaking of long internal waves 113

the present experiments, laterally contracting sidewalls were placed in the tank to
promote wave growth. The tank is housed in a constant-temperature room capable
of maintaining the temperature to within ±1 ◦C.

3.1.1. Stratification and density measurement

The fluid density stratification used in the experiments is a two-layer saline
stratification with a thin, continuously varying interfacial region separating the two
fluid layers. The densities of the fluid layers are prepared in separate storage reservoirs
to the desired values using an Anton-Parr density meter (model DMA 4500). For all
of the laboratory experiments, a density difference of �ρ/ρ0 = 3.0 ± 0.1 % was used,
where �ρ = ρ1 − ρ2 is the density difference between the lower and upper layers, and
ρ0 = (ρ1 + ρ2)/2 is the average density. To fill the tank, the fresher, upper layer is first
introduced into the tank; then, very slowly, the saltier, lower layer is injected below
the fresh layer. A diffuser plate is positioned at the tank inlet to minimize mixing
during the filling process.

Vertical profiles of fluid density are obtained by traversing a conductivity tem-
perature probe (Precision Measurements Engineering model 125) through the water
column at 10 cm s−1. This probe is frequently calibrated against the Anton-Parr density
meter to eliminate calibration drift during experiments.

To maintain the desired thin density interface between the two homogeneous fluid
layers, fluid is selectively withdrawn from the interfacial region prior to an experiment
using a thin slotted pipette, attached to a pump, and positioned at the density interface.
Following an experiment, during which the interface thickens, the interface is re-
sharpened to the desired thickness. Water is then added through the bottom and
top diffuser plates to maintain the fluid layer depths. Through a combination of
the interfacial sharpening and layer refilling, as many as 40 separate experimental
runs can be performed for a given experiment, at which point the fluid in the two
large reservoirs feeding the tank is usually exhausted. Typically the fluid layers are
maintained at h1 =h2 = 28 ± 0.2 cm and the interfacial thickness is sharpened to a
thickness δ = 1.00 ± 0.05 cm prior to an experimental run. The interfacial thickness
was measured by fitting the hyperbolic tangent profile (1) to the profiles and using
(3). Figure 3 shows sample density profiles demonstrating the repeatability of the
sharpening and refilling technique for generating the initial experimental stratification.
The Brünt–Väisälä frequency associated with this density interface, N =

√
g′/δ, sets

the maximum frequency of interfacial waves that can exist in the stratification.

3.1.2. Laterally contracting channel

In order to force monochromatic wave trains to breaking, an external wave growth
mechanism was required to overcome the damping effects of viscosity. A laterally
contracting channel section was placed in the tank to force wave growth with distance
away from the wavemaker; this channel contraction was followed by a constant-width
test section, which was followed by a brief expansion section at the wave damping
beach (figure 2). The lateral contraction and the test section were constructed of
thin transparent Plexiglas sheets fixed at the bottom and top of the facility. It was
found that a more severely contracting channel was necessary to overcome the large
damping effects of viscosity, which limited the experiments to investigations of longer
(low-kδ) waves. The width of the constant-width test section was chosen with care
because, as Thorpe (1987) showed, sidewall turbulence in narrow laboratory experi-
ments involving stratified fluids can cause spurious effects and lead to difficulty
in the interpretation of results. The width of the constant-width section was chosen
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Figure 3. Pre-experiment vertical density profiles following the interface sharpening technique.
(a) The profiles from 10 separate experimental runs; (b) the average profile, at enlarged scale.

iteratively to be sufficiently wide that sidewall turbulence contamination was negligible
for the wave frequencies described in this paper. This could be seen by looking at the
tank from above and viewing the index-of-refraction fluctuations near the sidewalls.
For test sections that were too narrow, or wave frequencies that were too high,
sidewall turbulence migrated to the centre of the test section, and contaminated the
flow in the test section before wave instability could occur. After several iterations,
the contraction shown in figure 2 was chosen for the experiments. The walls smoothly
contract laterally from 30 cm wide to 10 cm wide over a horizontal length of 140 cm,
followed by an expansion section. To prevent wave reflections from contaminating
the waves, a 1:6 sloping synthetic horsehair beach was placed at the far end of the
tank. No effects of wave reflection were observed during the experiments.

3.1.3. Wave generation

Waves are generated with a semi-cylindrical ‘plunger’ type wavemaker positioned at
the interface between the two fluid layers. The wavemaker head was constructed from
a piece of bisected, 27.5 cm diameter PVC piping. To generate waves, a linear actuator
(Industrial Devices Corporation model EC-2) vertically oscillates the wavemaker head
in proportion to a time-varying analog voltage control signal that is generated by
a computer. The shape of the waves was checked using ultrasonic wave gauge
measurements (for details on the probe see Michallet & Barthelemy 1997), and no
undesired wave anomalies were found to be present in the monochromatic wave
trains generated. At higher frequencies and large wavemaker stroke amplitudes, some
mixing was generated by the wavemaker, and for these cases, care was taken to ensure
that this mixed fluid did not reach the test section during the times of interest for the
experiment. The practical upper frequency limit for wave generation in the present
experiments was set not by the Brünt–Väisälä frequency of the density interface,
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but by viscous damping, primarily from the sidewall boundary layers, which quickly
damped the high-frequency waves (for details see Troy 2003). For these reasons, the
laboratory experiments were limited to the parameter range 0.05 <kδ < 0.3.

A constant-frequency, amplitude-modulated signal was used to drive the wavemaker
motion. The signal amplitude was ramped linearly in time from zero to a maximum
amplitude such that at some point in time, at the beginning of the test section,
which was the spatial location of the maximum wave amplitude in the channel, the
wave would become unstable. This allowed a single experiment to determine the
critical wave amplitude for a given wavenumber, provided that the maximum wave
amplitude occurring in the channel contraction over the course of the experiment was
large enough to induce wave breaking. This technique also allowed the camera to be
positioned at the location where the wave would first become unstable, the beginning
of the constant-width test section, ensuring that the first wave breaking event would
be observed by the camera. The amplitude was increased linearly generally over
5–10 wave periods, which was chosen to be long enough that no additional wave
components would be introduced into the tank, but short enough that the wave
would pass quickly through the instability transition, allowing the transition to be
easily identified.

3.1.4. Flow imaging

Quantitative flow imaging was done using planar laser-induced fluorescence (PLIF).
The PLIF images were used to track the density interface, measure wave and billow
properties and to capture images of the wave instability. For PLIF experiments,
the lower, saltier fluid layer is seeded with laser-fluorescing dye, Rhodamine 6G, in
the same manner as the stratifying agent (salt). The laser-induced fluorescence of the
Rhodamine can then be used as a surrogate for the salinity of the fluid since salt and
Rhodamine have similar diffusivities. An argon-ion laser (Coherent Innova 305), set
to 514 nm emission, is mounted below the tank as shown in figure 4. The emitted beam
is routed around the tank and focused onto a scanning mirror that sweeps the beam
across the imaging area, during which time the camera shutter is opened, creating an
image of the fluorescing fluid. High-resolution pictures were taken with a 1024 by
1024 12-bit greyscale digital camera (Silicon Mountain Designs); image sizes ranged
from 15 to 20 cm, setting the single pixel resolution at 0.15 to 0.20 mm. The focused
laser beam, at the centre of the image, has a diameter of less than 0.5 mm, which sets
the transverse resolution of the images. A typical scan time for the images is 15 ms,
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and frames were typically acquired at between 7.5 and 10.0Hz. Images are corrected
for attenuation and calibrated by comparing an image of the static, pre-experiment
interface with a vertical density profile taken at the same time. For selected imaging
experiments, the index of refraction was matched between the two fluid layers in order
to eliminate unwanted image aberrations due to index-of-refraction fluctuations. This
was done by seeding the upper fluid layer with 70 % isopropyl alcohol, following
standard techniques (McDougal 1979; Alahyari & Longmire 1994; Daviero, Roberts
& Maile 2001). Additional details on the experimental methods and instrumentation
can be found in Troy & Koseff (2005).

4. Results
4.1. Breaking mechanism

The results of the internal-wave-breaking flow visualization experiments will now be
described in detail. These experiments demonstrated that the breakdown mechanism
for long interfacial waves (0.05 <kδ < 0.3) was a modified shear instability, with
characteristic K-H billow roll-up and collapse. Waves having amplitudes beyond the
threshold amplitude for instability appeared to become unstable to a vigorous, strongly
spatially and temporally modifed K-H instability originating at the high-shear wave
crest and trough regions.

The evolution of long internal wave breaking, as observed in the laboratory
experiments, is described from the point of view of a stationary observer at the
location of the fixed camera, which was placed at the beginning of the constant-width
test section in the channel (x =140 cm). This is the location in the channel where
the wave amplitudes were largest and thus the location where wave breaking first
occurred. From this perspective, since the amplitude of the wave forcing was slowly
increasing in time, one observed the passage of waves with temporally increasing
amplitude. Typical results from the flow visualization experiments are presented in
the image sequences shown in figure 5. Time has been normalized with the wave
period T , with time t/T = 0 corresponding to the passage of the first wave crest in
the wave train.

Locally, as the wave amplitude grew in time, the first sign of instability was
the development of small interfacial disturbances, appearing as small first-mode
distortions of the interface, that formed in the crests and troughs of the waves.
Figure 5 shows the development of the disturbances in the crests (t/T = 0, 0.125)
and troughs (t/T = 0.375) of the wave. These disturbances develop slightly behind
(−x) the wave crests, for the forcing used in this experiment, and grew slightly in
amplitude as the wave passed through them. The disturbances appeared to drift very
weakly in the direction of wave propagation, but quantifying the drift was difficult
in the midst of the interfacial motion associated with wave passage. For the first few
wave crests and troughs following their initial observation the interfacial disturbances,
simply appear, grow slightly with the passage of the wave, disappearing by the arrival
of the next wave node, and then reappearing in the next wave trough/crest. The
disturbances were slightly more prevalent in wave troughs than crests. Between 1 and
4 disturbances formed in the wave crests and troughs during this phase, with larger
numbers of disturbances forming at later times, when wave amplitudes were close to
the breaking amplitude. The behaviour of the interfacial disturbances in this stage is
consistent with a disturbance that has a non-zero growth rate, but a growth rate that
is of insufficient magnitude to lead to overturning in the time scale of the applied
wave shear.
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As the waves grew further in amplitude, the growth of the interfacial disturbances
in one crest/trough passage period increased, until a point at which a thin wisp of
fluid was sometimes sheared off of a disturbance into the upper fluid layer, which
usually occurred at the arrival of a wave node. Following the shearing of the fluid
wisp, the disturbance disappeared, and the wisp of fluid was sheared according to
the direction of the shear of the next wave trough or crest, and quickly smeared
across the density interface such that it was no longer visible. This initial existence of
overturning fluid was deemed as the onset of wave breaking; an example of a weakly
overturning wisp can be seen in figure 5, at t/T = 0.375.

Following this initial instability, the next crest or trough usually became fully
unstable to a much more vigorous instability, since the local wave amplitude was
increasing slowly in time. At wave crests, disturbances became noticeable slightly
ahead of the wave crest, except that these interfacial disturbances then quickly grew
and rolled up into the billows resembling those typically associated with the K-H
instability. Typically 2–4 billows formed with fairly regular spacing. Billows originating
in the wave troughs rolled up in a forward sense (clockwise for a left-to-right travelling
wave; t/T =0.5, 0.625), while billows originating in a wave crest rolled up in a
backward sense (counter-clockwise for a left-to-right travelling wave; t/T = 1, 1.125).
This observation is consistent with the orientation of the wave-induced vertical shear
at those locations. These billows, like the initial disturbances, were mostly stationary,
with only a slight drift in the direction of wave propagation. As the K-H instability
is stationary (Hazel 1972; Hogg & Ivey 2003), this drift is perhaps due to the Stokes
drift associated with the waves.

Unlike the K-H instability associated with the steady stratified shear layer, where a
row of perturbations grow, roll up into billows, and collapse in unison, these billows
exhibited spatial variation in their phases due to the spatial variability of the wave
shear regulating their growth. Thus, for a row of billows, the leftmost billow (for a
wave travelling left to right) could be collapsing while the rightmost billow was just
forming, as can be seen in figure 6. In figure 6, the rightmost billow is ‘younger’, closer
to the wave trough, while the leftmost billow has already collapsed and is now being
sheared in the opposite direction with the approach of the next wave crest (from the
left in the image). In general, billow roll-up was more vigorous, and better organized,
in the wave troughs, looking more like the K-H billows usually seen in laboratory
experiments on unstable stratified shear layers. However, the core of the billows was
usually well-mixed from the initial roll-up, in contrast with the cat’s eye patterns of
steady shear layers; this may be a consequence of the billows rolling up turbulent fluid
from previous collapsed billows. Individual billow growth and collapse was strongly
modified by the local temporal variability of the wave shear, which caused billows to
abruptly collapse with the passage of wave nodes, regions where the vertical shear is
zero. Thus there are important differences between the observed wave instability and
the well-studied K-H instability associated with the steady, uniform, stratified shear
layer: the spatial and temporal variability of the shear driving the instability in the
wave case render the instability itself strongly spatially and temporally variable.

Billow roll-up ceased abruptly just following the arrival of the next wave node,
at which point the wave shear begins to reverse direction. The billows quickly
collapsed and were smeared horizontally across the interface, leaving small patches of
mixed fluid (t/T = 0.75, 1.25). For flow visualization experiments in which the index
of refraction was not matched, the turbulent stirring produced by these collapsing
events was characterized by large shadows in the laser light sheet below the turbulent
regions. Even for the experiments with matched index of refraction, the interfacial
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stirring associated with the breaking wave was sufficiently vigorous to render small
shadows in the light sheet, as can be seen, for example, below the turbulent interface in
figure 5, time t/T = 1.25. With the arrival of the next wave crest/trough, this collapsed
patch of fluid became organized into a billow that then grew as a disturbance, rolled
up, and collapsed on the interface. The collapsed turbulent patches seem to form
effective perturbation ‘seeds’ for the next instabilities. Billows at later times were
often turbulent from the onset (t/T =1, 1.5), and the clean billow roll-up as observed
in many tilting-tube experiments (Thorpe 1968a, 1971, 1973; Atsavapranee & Gharib
1997) was only observed, if at all, in the troughs of waves just starting to break.

After the passage of several waves during which vigorous billow behaviour was
observed, the interface became noticeably thickened, and the well-organized rows of
billows at wave crests and troughs were no longer observed. In this way, through the
local thickening of the density interface, the wave breaking served to return the wave
field to a more stable (albeit more chaotic) state than the initial, strongly stratified
wavefield. This behaviour is most likely due to an increase in the Richardson number
at the wave crests and troughs, since the Richardson number there is proportional
to the interfacial thickness (equation (4)). Generally the wave forcing was chosen to
allow 3–4 vigorously breaking wave crests or troughs, after which the wavemaker
stroke amplitude was quickly ramped off, so that mixing would cease, the wave field
would decay, and the interface could then be sharpened for the next experiment.

4.2. Billow structure

4.2.1. Billow development

Typical K-H billow time sequences observed during the experiments using the
PLIF flow visualization are shown in figures 7(a) (wave crest) and 7(b) (wave trough).
Both figures depict K-H billow development from roll-up to collapse for the case
kδ = 0.05. The time between images is approximately �t = 0.5 s, which corresponds
to �t/T = 1/16 (T is the wave period). The spatial extent of the images is labelled in
cm. The early, lump-like stage of the instability is not shown.

Figure 7(a) shows the evolution of a typical billow originating at the wave crest.
Image (i) shows the billow roll-up before collapse, consistent with the counter-
clockwise shear associated with the wave crest for the left-to-right travelling wave.
The billow in image (i) exhibits the mixed core that was seen for most of the billows.
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Figure 7. Flow visualization of K-H billow sequence originating at (a) a wave crest and
(b) a wave trough for kδ = 0.05. Wave direction is left-to-right, and distance is labeled in cm.
The time between images is approximately 0.5 s (0.06T).

This is in contrast to the ‘cat’s eye’ pattern often seen in steady or quasi-steady
stratified shear layers. From image (i) it is also apparent that the roll-up is effective
in straining the interfacial region into a much thinner interface; measurements show
that this straining can often reduce the interfacial thickness locally, both within the
billows and between them, from 1.0 cm to as little as 0.2 cm. Simulations of steady
stratified shear layers have shown this pre-turbulent straining to be responsible for
much of the irreversible mixing that occurs during the K-H instability (Winters et al.
1995; Caulfield & Peltier 2000; Smyth, Moum & Caldwell 2001; Peltier & Caulfield
2003), and this may also be true of the wave-induced instability shown here.
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Image (ii) in figure 7(a) shows the beginning of the convective collapse and initial
straining of the K-H crest billow. At this phase in the wave, the wave-induced
shear has ceased, and the K-H billow is gravitationally unstable. Several wave-like
disturbances can be seen on the underside of the collapsing billow as the beginning
of the convective instability. The fluid inside the billow remains well-mixed, but finer
scalar gradients, 1mm and less in scale, remain at the edges of the collapsing billow.
By image (iii) in figure 7a, the crest billow has collapsed and is beginning to be
strained across the interface as the wave-induced shear now becomes appreciable
in the clockwise direction with the arrival of the next wave trough. The fine-scale
structure is still evident, as scalar diffusion has not yet erased the scalar gradients
created by the billow roll-up and collapse. Image (iv) in figure 7(a) shows the smeared,
collapsed K-H billow that now forms the perturbation for a new K-H billow in the
arriving wave trough. The K-H billow is now sheared in the opposite direction,
effectively straining the fluid within it and hastening the mixing associated with the
small-scale structure remaining from the billow collapse.

Figure 7(b) shows a less vigorous billow that originates in a wave trough. The
roll-up seen in image (i) is again consistent with the clockwise shear imparted by the
wave at the wave trough; similar to the roll-up of the billow in figure 7(a), the billow
core is well-mixed from the onset of the instability. Image (ii) shows the convective
collapse of the billow, with the jet formed by the collapse impinging onto the density
interface billow, the unstable billow. Sharp scalar gradients remain at this initial stage
of collapse, which is not as vigorous as the crest billow shown in figure 7(a).

Image (iii) of figure 7(b) shows the collapsed billow beginning to be strained across
the density interface as the wave shear reverses. Sharp contrast still remains between
the collapsed billow and the surrounding fluid, but the billow core is now nearly
homogenized. Image (iv) shows the result of the continued shearing of the billow,
now in the opposite direction from the initial roll-up, leaving it difficult to distinguish
from the surrounding interfacial fluid.

As discussed in § 4.1, the billows, and the collapsed patches, were observed to
drift weakly in the direction of wave propagation. However, the K-H instability is
stationary, advecting at the mean interfacial flow speed. While the billow drift is in
the direction consistent with the Stokes drift associated with a progressive interfacial
wave (Tsuji & Nagata 1973), the Holmboe instability also has a finite speed as it
is not a stationary instability. The Stokes drift is of order (ka)2cp ∼ 10−2cp , where
the interfacial wave speed is cp = ω/k and observed steepnesses are O(10−1). For a
wave-induced Holmboe instability, one would expect propagation speeds of order
10−1(�U/2) (Hogg & Ivey 2003), which, with �U ≈ 2aω also yields a propagation
speed of order 10−2cp, making the two possible mechanisms difficult to distinguish.
The possibility of Holmboe instability is discussed further in § 5.

4.2.2. Billow wavelength

The wavelengths of the K-H billows, at their initial formation, were determined by
manually interrogating the digital images of wave breaking. The value of the billow
wavelength for the initial instability was found to be λi/δ = 4.3 ± 0.9, where λi is
the billow wavelength. The noise in the measurement precluded the determination
of any dependence of λi/δ on the wave Richardson number Riw or wavenumber kδ.

Measurements of billows at later times in the wave cycle, when the interface had
thickened due wave breaking, showed that the billow wavelength was greater for
these later times. This suggests that the billow wavelength does indeed grow with the
shear layer thickness (which should be the same as the density interfacial thickness, as
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discussed in § 5), as linear instability theory suggests for the optimum instability (Hazel
1972). The inviscid analysis in § 5 suggests that the billow wavelength should be only
very weakly dependent on the wave Richardson number for the waves investigated
in this study and should scale as λi/δ ≈ 2.4–2.7. The billow wavelengths measured
by other researches for steady stratified shear layers vary from λi/δ ≈ 2.4 to 5.9 (e.g.
Thorpe 1971; Atsavapranee & Gharib 1997). The large discrepancy in the published
measurements is caused by differences in the precise definition of the interfacial
thickness δ, differing velocity/density interfacial thicknesses, and velocity/density
profile offsets.

A possible reason for the discrepancy between the measured wavelength and the
theoretical (inviscid) value is viscosity, which would lengthen dominant instability
wavelength. Following usual definitions associated with stratified shear layers, the
Reynolds number representative of the shear flow near the wave crests and troughs
is defined as Re0 = �Uδ/4ν, where the parameter �U is the total velocity difference
across the density interface, and δ is the thickness of the shear layer (e.g. Hogg &
Ivey 2003). Re0 can be approximated for the present wave-induced shear layer as

Re0 ≈
√

2(ka)

4(kδ)1/2

(
g′1/2δ3/2

ν

)
, (7)

where the deep irrotational interfacial wave solutions (e.g. Turner 1973, Ch. 2) have
been used to rewrite �U ≈ 2aω and ω2 = g′k/2. For the experiments described herein,
the quantity g′1/2δ3/2/ν was constant at 540, and since measurements to be discussed
in § 4.3 showed that ka ≈

√
2kδ to good approximation at the point of wave breaking,

Re0 was nearly constant for all runs at Re0 = 270. Stratified shear flow stability
calculations by Haigh (1995) and Hogg & Ivey (2003) suggest that viscosity begins
to affect the stability properties (e.g. billow size and growth rate) for Re � 100, with
the effect being to damp high-wavenumber perturbations, shifting the most unstable
perturbation to lower wavenumber, and reducing the perturbation growth rates by a
few percent. The effects of viscosity are discussed further in § 5.

4.3. Breaking threshold

The calibrated wave images were used to determine the threshold wave amplitude
at which wave breaking occurred. With these flow images, the wave amplitudes
were measured, and waves were correspondingly deemed ‘stable’, at the ‘onset of
breaking’, or ‘breaking’. ‘Stable’ waves were so called because of the absence of any
visible deformations of the sinusoidal wave shape aside from those associated with
finite-amplitude effects. Waves at the ‘onset of breaking’ were so called because they
exhibited noticeable interfacial disturbances of the type described earlier, in which the
interface was perturbed by small-amplitude, nearly stationary lowest-mode interfacial
distortions that originated at wave crests and troughs, but disappeared with the
arrival of the next wave node. No overturning fluid was observed for waves deemed
at the ’onset of breaking’. Waves deemed ‘breaking’ exhibited visible overturns, in the
form of the K-H billows described earlier, which originated in the crests and troughs
of the waves.

For a given experiment at a fixed wave frequency, a time sequence of wave images
taken at the wave breaking location yielded a record of stable wave amplitudes, wave
amplitudes at the onset of breaking, and unstable (breaking) wave amplitudes. The
wave amplitudes for the various states are plotted in figure 8, where the measured
wave steepness ka is plotted as a function of non-dimensional wavenumber kδ for
the three types of waves measured. Here k has been obtained from the thin-interface,
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two-layer linear dispersion relation

ω2 =
g′k

coth(kh1) + coth(kh2)
. (8)

Also plotted are the lines corresponding to ka =
√

2kδ and ka =
√

4kδ/5.3, which
result from the application of the steady Ri = 1/4 instability criterion to the wave
Richardson number Riw estimates Riw = kδ/2(ka)2 and Riw = kδ/5.3(ka)2, respectively.
From figure 8, it appears that the critical breaking wave steepness ka increases
monotonically with kδ, following a (kδ)1/2 dependence that is consistent with the
simple application of the steady Ri = 1/4 criterion. The data agree very well with
the line corresponding to ka =

√
2kδ; however, this is only a fortuitous coincidence

resulting from the offsetting effects of using an overpredictor for Riw and the poor
assumption that the flow is steady. The effect of unsteadiness is examined more closely
in § 5.

Figure 9 shows the same onset wave breaking data, plotted in terms of the wave
Richardson number Riw defined by equation (4). From figure 9, it is apparent that
the wave Richardson number at the onset of wave breaking is well below 1/4 for all
values of kδ where wave breaking was observed, in the range Riw =0.07–0.08 ± 0.03.
It is difficult to discern a trend in Riw with kδ owing to the uncertainty in the
measurements, but a possible trend is proposed in the following section.
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5. Discussion
The experimental observations described in § 4.1 suggest that the instability of

long internal waves is strongly temporally and spatially variable, taking the form
of an oscillatory stratified shear layer that becomes unstable to a modified Kelvin–
Helmholtz instability. To lowest order, the profile of horizontal velocity associated
with a lowest-mode internal wave in a hyperbolic tangent stratification at wave crests
and troughs (1) is

U (z) = aωsechk/m(mz) tanh(mz) (9)

Thorpe (1968). This solution represents the lowest-mode inviscid normal-mode solu-
tion associated with the hyperbolic tangent density profile (1). An important point
here is that for the lowest internal gravity wave mode, the velocity profile is determined
by the density profile through the normal-mode relation (e.g. Gill 1982), and thus the
density and velocity thicknesses are constrained to be equal for the lowest mode.

The Richardson number distribution associated with (1) and (9) is

Ri(z) = Riw
[sech(mz)]2(1−k/m)

[1 − (k/m + 1) tanh2(mz)]2
. (10)

These profiles are plotted in figure 10 for two different wavenumbers.
For long waves (k/m −→ 0), the velocity profile at wave crests and troughs, to

lowest order (9), reduces to the oft-studied coincident, equal-thickness hyperbolic
tangent stratified shear layer having a total velocity difference �U = 2aω across the
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shear layer:

U (z) = aω tanh(mz). (11)

For this profile, the mid-point Richardson number (here termed the wave Richardson
number, Riw) is the minimum Richardson number in the vertical distribution. From
the Miles–Howard Theorem, linear instability is possible for this long-wave case only
if the mid-point Richardson number falls below 1/4 (Miles 1961; Howard 1961).
However, for waves having higher k/m, the mid-point Richardson number is no
longer the minimum Richardson number of the profile (figure 10), and thus the
stability of the flow is not guaranteed even if the mid-point Richardson remains
above 1/4.

The linear, inviscid stability of this flow, sometimes termed the ‘anti-symmetric
double jet’, was investigated by Hazel (1972). In the long-wave limit (k/m → 0),
the flow is potentially unstable to the stationary Kelvin–Helmholtz instability if the
mid-point Richardson number (usually termed ‘J ’ for the steady shear layer) falls
below 1/4, and stable if the mid-point Richardson number remains above 1/4. The
stability boundary in J − α space, with α being the non-dimensional perturbation
wavenumber, is given by J = α(1 − α).

From figure 10, it can be seen that the effect of finite k/m (shorter waves) is to make
the horizontal velocity in each layer decay with distance away from the interface,
similar to that of a surface water wave, but the density and velocity interfacial
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thicknesses remain the same. The linear stability of velocity profiles having finite k/m

is discussed briefly by Drazin & Howard (1966) and Hazel (1972), who note that the
effect of finite k/m is to increase the wavenumber of the most unstable perturbation,
changing the stability boundary smoothly from J = α(1 − α) to J = α2(3 − α2)/9. It is
important to note that the instability remains of the stationary K-H type; the critical
mid-point Richardson number, below which the flow is potentially unstable, remains
at 1/4.

A number of recent studies have focused on the breakdown of stratified shear layers
due to the Holmboe instability (Holmboe 1962), and it is worth briefly discussing the
present results in the context of those studies (see Smyth & Winters 2003 for a review).
The Holmboe instability typically has lower growth rates than the K-H instability,
although simulations have shown that it can generate comparable turbulence and
mixing (Smyth & Winters 2003). Holmboe instability can occur, for coincident shear
and density tanh profiles, when the velocity thickness exceeds the density thickness by
at least 2.4 (Smyth, Klaassen & Pelties 1988; Smyth & Peltier 1989, 1991; Haigh 1995;
Smyth & Winters 2003; Hogg & Ivey 2003), and it is believed that this arrangement
is probably common in the ocean on account of the differing diffusivities between
momentum and the density-stratifying scalars, heat and salt (Smyth & Winters 2003).

To the degree that the hyperbolic tangent velocity (11) and density (1) profiles
represent the velocity profile associated with long internal waves, the set equivalence
for the velocity and density thicknesses in the present wave-forced case, determined
by the normal-mode relation, would seem to preclude the possibility of the Holmboe
instability for long progressive internal waves. The stability characteristics of the
velocity and density profiles associated with shorter waves, with finite k/m, was
investigated by Drazin & Howard (1966) and Hazel (1972), who briefly cite results
that the instability remains of the stationary K-H type for the profiles given by (9)
and (10). Therefore, it seems that the instability should remain of the K-H type
even for shorter waves. Moreover, for the wave breaking reported here, for which the
perturbation growth rate must compete with the wave time scale, it seems additionally
unlikely that the lower growth rates associated with Holmboe instability would allow
the wave-induced instability to form.

Analytical methods do exist to treat the instability of time- and space-varying
base flows (see Drazin & Reid 1981 for a review), and these methods, typically
Floquet analysis, have been applied to internal gravity waves (e.g. Lombard & Riley
1996; Yau, Klaassen & Sonmor 2004) and to secondary instabilities in stratified and
unstratified shear layers (Klaassen & Peltier 1985, 1989, 1991; Smyth & Peltier 1994;
Peltier & Caulfield 2003). However, a more common approach is to essentially ignore
the spatial or temporal variability when the spatial and temporal scales of the base
flow variation are large relative to the instability time scales. Most stability analyses
of unsteady or non-uniform stratified shear layers involve the application of the
steady, uniform, inviscid Taylor–Goldstein (T-G) equation to find instability growth
rates (the reader is referred to excellent discussions on stratified shear layer instability
by Turner 1973; Drazin & Reid 1981; and Peltier & Caulfield 2003). For example,
Thorpe (1971) treated base flow unsteadiness in unsteady tilting-tube experiments by
assuming that the instability growth rates provided by the T-G equation held for
slowly varying shear, and that the time-integration of those growth rates would give
an indication of instability. The instability of spatially non-uniform stratified shear
layers was treated by Pawlak & Armi (1996), who applied the results of the T-G
equation for horizontally non-uniform baroclinic exchange flows by assuming that the
flow varied little over the region of instability. To our knowledge, the only treatment
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of an oscillatory stratified shear layer has been that of Kelly (1965), who examined
the problem of an oscillatory shear across a zero-thickness density/velocity interface.
Kelly conjectured that the effect of the oscillatory shear, for finite-thickness interfaces,
would be to move the most unstable wavenumber to a higher wavenumber and that
the effects of the oscillation would be felt mostly by the range of wavenumbers closest
to the cutoff wavenumber.

In addition to unsteadiness and non-uniformity, another difference between the
present wave instability and a typical stratified shear layer is the vertical acceleration
in the wave case. Although the wave motion does oscillate the density/shear interface
vertically, with maximum vertical accelerations (∂w/∂t) at the wave crests and
troughs, this vertical acceleration should not affect the development of the instability
provided that ∂w/∂t 	 g. Since a progressive interfacial wave has maximum vertical
acceleration ∂w/∂t ≈ aω2, and for deep waves ω2 ≈ g′k/2, vertical accelerations are
negligible provided (ka)(�ρ/ρ0) 	 1. For these experiments, the quantity (ka)(�ρ/ρ0)
ranged from 0.01 to 0.02, and therefore it is believed that the wave-induced vertical
accelerations did not strongly affect the instability. The effect of appreciable vertical
wave accelerations is to augment the stabilizing effect of gravity g by an amount
+∂w/∂t (z positive upward), and thus it is possible that the effect of these accelerations
would be destabilizing at the wave crests (∂w/∂t < 0), and stabilizing in the wave
troughs (∂w/∂t > 0). In our experiments, the only difference observed between trough
and crest billows was that the trough billows were slightly more coherent than those
originating at wave crests.

Our analysis here is similar to that of Thorpe (1971) in that we assume that the
time-integrated T-G instability growth rates should provide an indication of stability
for the flow. In § 5.1, we apply temporal considerations to the instability, explicitly
considering the competition between the instability growth rate and the wave fre-
quency, and determine a wavenumber-dependent theoretical steepness above which
long internal waves break. This result is then compared to the data presented earlier
in § 4.3. In § 5.2 we address horizontal non-uniformity and discuss possible reasons
for transition to a convective wave instability.

5.1. Temporal considerations

In steady stratified shear layers, a non-zero perturbation growth rate is a sufficient
criterion for linear instability. However, for the unsteady shear layer, a perturbation
may have a non-zero growth rate and the flow may still be stable if the shear is
reduced before the perturbation has sufficient time to amplify. Therefore, instability
will occur only if sufficient instability growth can occur within the time scale of
appreciable shear.

For waves long relative to the interfacial thickness (small k/m), the horizontal
velocity profile at wave crests and troughs simplifies to

U (x, z, t) = aω tanh(mz) cos(kx − ωt). (12)

The Richardson number associated with this velocity distribution is

Ri(x, z, t) =
N2

|∂U/∂z|2

=
Riw

sech2(mz) cos2(kx − ωt)
, (13)
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where

Riw =
k/m

(ka)2
(14)

is the wave Richardson number, here defined in terms of the hyperbolic-tangent-profile
inverse length scale m (equation (3)). Riw is the mid-interface Richardson number
in the interfacial wave where the shear is greatest, at the crest and troughs of the
wave. The vertical variation of crest/trough horizontal velocity (9) and corresponding
Richardson number at wave crests and troughs is shown in figure 10 above.

At a given x-location, the mid-interface Richardson number Ri0 varies in time as

Ri0(t) =
Riw

cos2(ωt)
. (15)

If Riw is less than 1/4, then the Richardson number will locally fall below 1/4 for a
time

Tw =
2

ω
arccos

(
2Ri1/2

w

)
. (16)

Wave instability will occur if appreciable instability growth can occur in a time less
than Tw . The instability growth rate will determine whether or not appreciable instabil-
ity growth will occur. Instability growth is parameterized by ai(t), where ai(t) is the
time-varying amplitude of the growing perturbation, which is presumed to behave as

ai(t) =
1

σi

dai

dt
. (17)

In a time Tw , the perturbation will grow to an amplitude

aiw = ai0 exp(σ iTw), (18)

where σ i is the average growth rate over time Tw and ai0 is the initial perturbation
amplitude. Therefore, instability will occur if aiw/ai0 
 1, or

σ iTw 
 0. (19)

Estimates for the average growth rates of the K-H billows can be obtained from
solutions to the T-G equation for steady, coincident hyperbolic tangent velocity and
density profiles. Hazel (1972) provided the growth rates for the inviscid K-H instability
associated with these profiles. Those results were verified for the present study, and
are presented in figure 11. The perturbation growth rates depend on both Ri0 and the
perturbation wavenumber αi . The optimum instability, that with the highest growth
rate, had wavenumber αi/m = 0.4–0.5 that was only weakly dependent on Ri0. For
this optimum wavenumber, the perturbation growth rate was found to increase
nearly linearly with decreasing Ri0. Provided that the crest and trough regions are
long relative to this optimum instability size, the optimum instability should prevail.
Since the crest and trough regions have length π/2k, this will be the case provided
kδ < 0.7. The dependence of the growth rates on Ri0 for the optimum instability can
be approximated from Hazel’s (1972) growth rates as

σi =
m�U

2
(−0.8Ri0 + 0.2), (20)

where �U is the total velocity difference across the hyperbolic tangent shear layer.
This approximation correctly prescribes a zero growth rate for the marginal stability
case, Ri0 = 1/4. For the velocity profile specified in (12), �U = 2aω, and therefore the
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Figure 11. Instability growth rate contours (2σi/m�U ) from T-G solutions identical to those
of Hazel (1972) for coincident hyperbolic-tangent velocity and density profiles. The stability
boundary Ri0 = αi(1 − αi) is also shown.

instability growth rates at the crests and troughs of the interfacial waves should relate
to the mid-interface Richardson number Ri0 as

σi = maω(−0.8Ri0 + 0.2). (21)

If the mid-interface Richardson number Ri0, the controller of instability, varies as
Riw/ cos2(ωt) (equation (15)), then the average growth rate over the time Tw , the time
during which the Richardson number is below 1/4, is

σ i =
1

Tw

∫ +Tw/2

−Tw/2

σi(Ri0(t)) dt

= maω

[
−0.8Ri1/2

w (1 − 4Riw)1/2

ωTw

+ 0.2

]
, (22)

and therefore

σ iTw =
−0.8Ri1/2

w (1 − 4Riw)1/2 + 0.4 arccos
(
2Ri1/2

w

)
Ri1/2

w (k/m)1/2
. (23)

The instability criterion (19) can be rephrased in terms of a constant c for the case
of marginal stability as σ iTw − c = 0 and solved numerically for different values of c. In
general, the value of c will depend on the exact definition of ‘instability’ since it is
directly related to the maximum amplitude of the perturbations (equation (18)).
Typically K-H instabilities grow to a buoyancy-regulated amplitude, at which time a
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Figure 12. Measured critical wave Richardson numbers Riw and critical wave
steepnesses ka and that predicted by theory (solid line).

catastrophic convective collapse renders the flow fully turbulent (Caulfield & Peltier
2000; Peltier & Caulfield 2003). In § 4.3, the wave was deemed ‘unstable’ when
overturning fluid was observed. The solutions to the marginal stability equation give
the variation of the critical wave Richardson number Riw, below which the wave is
expected to break, with the non-dimensional wavenumber k/m (or, equivalently, kδ

via (3)). The results can be rephrased as the critical wave steepness ka by converting
Riw to ka via equation (14). Figure 12 shows the calculated critical wave Richardson
numbers and wave steepnesses along with the data presented earlier in figures 8 and
9; the wavenumber k/m has been converted to kδ via (3). The value of the constant,
c =5, was chosen in order to give good agreement with the data.

Figure 12 shows good agreement between the measured and predicted critical
wave Richardson numbers and corresponding steepnesses, correctly predicting the
observed (kδ)1/2 dependence for the critical wave steepness ka over the range of the
measurements; as mentioned earlier, it is difficult to deduce a trend in the Riw values
owing to the measurement uncertainty. The analysis correctly predicts a critical wave
Richardson number of 1/4 for the kδ =0 case, which corresponds to that of the
steady stratified hyperbolic-tangent shear layer. As the wavenumber kδ increases, the
theory gives a corresponding reduction in the critical wave Richardson number. This
is because higher-frequency waves allow less time for instability growth, necessitating
an even lower Richardson number so that the growth rate is sufficiently large.

The theory is expected to fail at higher kδ for several reasons. First, as kδ becomes
larger (or equivalently as k/m becomes larger), the approximation for the wave crest
and trough velocity profile (12) breaks down, owing to both the k/m dependence
in (9) and finite-amplitude wave effects that necessitate a higher-order normal-mode
solution since the critical steepness ka, the expansion parameter, increases with
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kδ. These effects would presumably change the growth rates predicted by the T-
G equation, and thus affect the predicted critical Richardson number. Once again,
it would have been desirable to use measured simultaneous profiles of velocity and
density in the stability calculations, but these were not available from our experiments.

It is expected that viscosity would affect the analysis in several ways. As mentioned
earlier, the Reynolds number relevant to the instability, given by (7), was nearly con-
stant for all wave breaking runs at Re0 = 270. Hogg & Ivey (2003) numerically investi-
gated the stability of steady, viscous hyperbolic-tangent stratified shear flows and
found that the main effect of viscosity at similar Re0 is to slightly lower the instability
growth rates; the most unstable perturbation wavenumber remains relatively unchan-
ged. Maslowe & Thompson (1971) and Haigh (1995) also obtained similar results,
finding that the damping effect of viscosity on the growth rates was restricted to
Reynolds numbers less than O(102). Since the primary effect of viscosity is to lower
the instability growth rates, requiring a lower Richardson number for instability, the
viscous effect is difficult to distinguish from the time-scale constraint, which also
lowers the critical Richardson number for the wave-induced instability. However,
for the Reynolds number of the present experiments, viscosity would account for
a lowering of the critical Richardson number by only a few percent from 0.25; the
present measurements show an estimated reduction to less than 0.1, making the wave-
induced unsteadiness the dominant factor in the observed low critical Richardson
numbers. One could presumably follow similar arguments in considering the effects
of finite scalar diffusivity on the instability and analysis, although less is known about
the effects of scalar diffusivity on stratified shear flow instability.

5.2. Spatial considerations

The discussion thus far has essentially dealt with a time-periodic, parallel, uniform,
stratified shear flow having a velocity profile corresponding to the long-wave normal-
modes solution for hyperbolic-tangent density and velocity profiles. Horizontal non-
uniformity has not been considered, although it can be considered in much the way as
unsteadiness was examined. If the wave Richardson number is below 1/4, the spatial
region at the wave crests and troughs over which the mid-interfacial Richardson
number is also below 1/4 is Lw = (2/k) arccos(2Ri1/2

w ) since at any instant in time, the
mid-interface Richardson number in the wave varies as Ri0(x) = Riw/ cos2(kx). This
region is finite, but presumed not to have much effect on the shear instability provided
that Lw is much larger than the optimum instability wavelength λi ≈ 4π/m; one could
apply the T-G equation with inserted Taylor series expansions across a region about
the crest and trough regions of the wave. A conjecture is that as kδ increases, eventually
the wave will shorten to a point where Lw becomes of the order of the optimum
instability wavelength, and the spatial scale of the instability will be constrained by the
wave. If the critical wave steepness behaves as ka ≈

√
2kδ, which the laboratory data

suggest, then the transition Lw ≈ λi , where the wave begins to constrain the scale of the
instability, will occur at roughly kδ ≈ 0.8. Following Hazel’s results, associated with
this imposed scale of instability is a reduced, less-than-optimum instability growth
rate, which will require an even lower Richardson number to satisfy the time-scale
instability constraint (19). Hazel’s analysis predicts a cutoff wavenumber, αi/m = 1,

which is the smallest unstable perturbation; perturbations shorter than αi/m = 1 are
not unstable (figure 11). Therefore it is possible that as the wave shortens more and
more, eventually shear instability becomes theoretically impossible when the region
of appreciable shear (Lw) is less than the smallest permissible instability. Beyond that
transition, considering even shorter waves, other instability mechanisms may become
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the dominant instability mechanism – perhaps a more classical convective overturning
like that of breaking surface waves, and that shown by Fringer & Street (2003) in
their numerical simulations of high-kδ waves. The determination of the exact kδ value
associated with the transition from shear to convective instability – when the smallest
permissible shear instability no longer fits within the wave crest and trough regions –
would involve calculations of T-G stability diagrams in the Ri0 −αi-plane for finite ka

and kδ interfacial wave shear/density profiles, such as those given by Thorpe (1968c).

6. Conclusions
Laboratory experiments were conducted in order to determine the wave breaking

mechanism and threshold for long interfacial waves with finite-thickness interfaces.
For the experiments, monochromatic wave trains with slowly increasing amplitude
were forced to breaking through a lateral channel contraction. Flow visualization with
planar laser-induced fluorescence (PLIF) allowed the wave breaking mechanism and
breaking steepness to be identified. The laboratory experiments have shown that, for
waves having wavenumber 0 < kδ < 0.3, monochromatic wave breaking occurs due to
a shear instability originating in the high-shear regions of the wave crests and troughs.
This instability most closely resembles the K-H instability. However, the instability is
strongly modified by the temporal and spatial variation of the wave field driving the
instability. The initial stages of instability involve the formation and disappearance
of low-mode disturbances in the crests and troughs of the wave; these disturbances
sometimes released faint wisps of fluid into the upper layer as the wave neared the
breaking amplitude.

The full wave instability initially resembles the K-H instability in a stratified shear
layer, with several disturbances forming in the crest and trough regions rolling up into
finite-amplitude billows. The sense of billow roll-up is consistent with the sense of
shear, respectively, at the wave crests and troughs. The billows are nearly stationary,
but do have a slow drift in the direction of wave propagation, consistent with the
Stokes drift for finite-amplitude progressive interfacial waves. While we believe that
the instability is an unsteady, non-uniform K-H instability, more detailed stability
analysis is required to prove this conclusively; measurements permitting such analysis
were not available for our study. The subsequent collapse of these billows, unlike an
unstable steady stratified shear layer, appears to be regulated not by buoyancy but
by the change in direction of the wave shear caused by local changes in wave phase.
The collapsed billows are quickly sheared across the interface, and these patches form
effective perturbations in the next wave crest or trough; these patches then again roll
up into billows that are more turbulent and disorganized. The cycle continues, in the
experiments, until the interface has thickened to a stable state for the wave conditions,
or until wave generation is stopped. Future work will focus on the analysis of the
billow growth rates and wavelengths in the light of what is already known about
steady stratified shear layer instability.

The critical steepness at which wave breaking occurred was determined using visual
measurements of the wave crests and troughs at wave breaking. The results show that
the critical steepness, for the range of waves studied here, is wavenumber-dependent,
with the breaking steepness increasing with increasing wavenumber as ka ≈

√
2kδ to

good approximation. This is consistent with a critical Richardson number regulat-
ing wave instability. However, the wave Richardson number Riw calculated from
the observations at the threshold of wave breaking was significantly below the often-
assumed stability limit of 1/4. The measured estimates of the wave Richardson number
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were found to be Riw = 0.07–0.08 ± 0.03 at the initial observation of overturning. This
is not unexpected, as the stability limit Riw =1/4 is derived for steady flows for
which the instability has unlimited time to develop. In the case of instability arising
due to wave-induced shear, the applied shear driving the instability is oscillatory,
and thus to become unstable, the flow perturbations must not only have a non-zero
instability growth rate; they must also have a growth rate large enough such that the
perturbations grow to finite amplitude within the wave time scale.

A simple hypothesis to predict the wavenumber dependence of the steepness at
which interfacial waves will break was put forth. The hypothesis relies on growth
rates provided by solutions to the T-G equation for a hyperbolic-tangent stratified
shear layer, a flow which is taken to model the flow at the crests and troughs of
progressive long interfacial waves. These growth rates were used to quantify the wave
instability threshold in terms of ka or Riw . The prediction is based on the requirement
that appreciable instability growth take place over the time of wave-imposed shear.
For waves having crest and trough regions much greater than the optimum instability
wavelength (kδ � 0.8), the instability is expected to be the optimum instability (that
with the highest growth rate). In this case, the instability wavelength should scale only
with the interfacial thickness, in keeping with inviscid stratified shear layer analysis,
and be nearly independent of Richardson number (the interfacial thickness was not
varied in this study). In this regime, the long-wave regime, the theory correctly predicts
a Richardson number below 1/4 at wave breaking, a corresponding increase in wave
breaking threshold steepness with increasing number, and shows good agreement with
the laboratory data when a constant used in the argument is chosen appropriately.
The theory is expected to fail at higher kδ owing to finite-amplitude and viscous
effects that would change the underlying base flow assumed in the stability analysis.

It is hypothesized that, as kδ increases, eventually the wave crest and trough regions
shorten to a scale that is comparable with the optimum instability wavelength. Beyond
this point, the wave may set the scale of the instability, the instability will be less
than optimum, and thus the critical wave steepnesses and critical wave Richardson
numbers will change more dramatically with kδ. Stratified shear instability theory
predicts a cutoff perturbation wavenumber above which no unstable perturbations
exist. Therefore it is possible that a corresponding cutoff wavenumber exists for the
shear instability of progressive interfacial waves, occurring when the wavenumber kδ

increases to the point where the crest and trough regions of the wave are smaller than
the smallest permissible instability. Beyond this point, the instability may transition to
a more classical convective wave breaking similar to that found by Fringer & Street
(2003) in their experiments of higher-kδ waves.

The authors are grateful to our late colleague Joel Ferziger, Oliver Fringer, Greg
Ivey, Andy Hogg, and three anonymous reviewers for their helpful comments, and
to Robert Brown for his help with the construction of the experimental facility. This
work was supported by the National Science Foundation, Physical Oceanography
Division Grant NSF OCE-9624081.
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